LETTERS TO THE EDITORS

The Hydrogenolysis of Alkanes on Metallic Molybdenum on Alumina

Mo(CO)₆ on dehydroxylated alumina heated in flowing helium to between 300 and 500°C and then in flowing hydrogen at 650°C ((MoCO)₆/DA;He,300-500°C;H₂, 650°C) consists of ca. 3- to 4-nm particles of metallic molybdenum on Al₂O₃ which still contains about 0.01 C per Mo (1, 2). Further heating in H₂ to 950°C removes the residual carbon but results in no detectable change in catalytic activities and selectivities. $MoO_3/\gamma-Al_2O_3$; $H_2,950^\circ$, produces what is essentially the same material (1, 2). At 500°C, MoO₃/Al₂O₃ with less than one monolayer loading cannot be reduced below Mo(IV)/Al₂O₃, but at 600°C some Mo(III) appears to be formed (3). Neither reduction at temperatures greater than about 600°C nor studies of catalytic activity of MoO₃/Al₂O₃ reduced below Mo(IV) appear to have been reported before Ref. (2). Both the $Mo(0)/Al_2O_3$ catalyst prepared from Mo(CO)₆/Al₂O₃ and that from MoO₃/ Al_2O_3 were essentially the same in the amount of oxygen consumed in titration at 500° C (O₂/Mo = 3), in susceptibility to poisons, in behavior on regeneration, in catalytic activity for the hydrogenolyses of propane and cyclopropane, and in that for the hydrogenation of propylene (1, 2, 4). In particular, both catalysts have the same high activity for the hydrogenolysis of propane at 250°C and the same selectivities for single and double hydrogenolysis (1, 2). A number of other alkanes were studied on $Mo(0)/Al_2O_3$ prepared by $Mo(CO)_6/DA$; $\text{He},300-500^{\circ}\text{C};\text{H}_{2},650-950^{\circ}\text{C}$ (5). After Ru, these Mo(0)/Al₂O₃ catalysts are among the most active hydrogenolysis catalysts so far reported. The rate of any skeletal isomerization must have been less than 0.02 that of hydrogenolysis (5). The results given above have been confirmed in more recent work (6). In Refs. (1, 2, 4-6), the O_2 contents of the mixtures flowing over the catalyst were measured at the reactor and maintained below 0.03 ppm. Metallic Mo itself is clearly active for hydrogenolysis although perhaps its surface becomes converted to carbide during reaction but with little loss of hydrogenolytic activity.

Holl et al. (6-8) have recently employed XPS to study the reduction of MoO₃/Al₂O₃ By $H_2,950$ °C. They concluded that the Mo(VI) was reduced nearly to the state of metallic molybdenum (7). They studied the reaction of several alkanes in hydrogen at 350°C on a commercial molybdenum powder pretreated H₂,500°C,15 h (8), and on a MoO₃/Al₂O₃ pretreated H₂,950°C (9). At 350°C, both materials exhibited a weak activity for skeletal isomerization (about 0.001 that of Pt) and a much lower activity for hydrogenolysis. In one case in a flow reactor, a sample of 4 wt% Mo catalyst with \sim 80 μ mol of Mo, 350°C, and a flow rate of 10 cm³ min⁻¹ gave 2.4% conversion of 2methylpentane (mostly bond-shift isomerization), whereas, in Ref. (1), a 7.4 wt% Mo catalyst containing 2 μ mol of Mo, 249°C, and 74 cm³ min⁻¹ gave 6% hydrogenolysis of propane. There was some difference in the ratio, alkane/H₂, which was 0.0067 in Ref. (9) and 0.038 in Ref. (1).

Unfortunately Holl et al. did not comment upon the drastic difference in hydrogenolytic activity noted above since they had not come upon Refs. (1, 2, 4) and stated that "Up to now, no one has studied the high-temperature reduction (between 550 and 950°C) of alumina-supported MoO₃ catalysts" (7).

Holl et al. found that evaporated Mo film

was a hydrogenolysis catalyst unlike Mo powder, but they decided that it was Mo powder; H₂,550°C,15 h, that was characteristic of Mo metal, in part, because injection of pulses of O₂ and H₂O at 350°C into the reactant flow or further heating of the Mo powder to 950°C had little effect upon the catalytic character of the catalyst (8). They concluded that the O_2 adsorbed from injections was removed by H₂,350°C, and that the H₂,550°C treatment produced a clean surface of Mo. The contrary assumption that the Mo powder and the Mo/Al₂O₃ of Holl et al. were contaminated in all of the situations just described, probably by oxygen adsorbed from the reactant stream, is equally compatible with the data. Oxygen is extracted from H₂ by Mo(0)/Al₂O₃ at 300°C and not removed from Mo metal by H₂ until temperatures much above 550°C (see Fig. 2 of Ref. (1)). Since hydrogenolysis by $Mo(0)/Al_2O_3$ is extremely sensitive to poisoning by O₂, CO, H₂O, and even to some extent by N_2 (1), we suggest that surface contamination resulting from oxygen in the reactant streams of Holl et al. led to drastic poisoning of hydrogenolysis. The suggestion must be tentative since Holl et al. did not describe purification procedures for hydrocarbons or gases, nor did they report measurement of the O2 content of the reactant mixture at the catalyst.

REFERENCES

- Nakamura, R., Pioch, D., Bowman, R. G., and Burwell, R. L., Jr., J. Catal. 93, 338 (1985).
- Nakamura, R., Bowman, R. G., and Burwell, R. L., Jr., J. Amer. Chem. Soc. 103, 673 (1981).
- Hall, W. K., and Lo Jacono, M., "Proceedings, 6th International Congress on Catalysis, London, 1976" (G. C. Bond, P. B. Wells, and F. C. Tomkins, Eds.), p. 246. The Chemical Society, London, 1976.
- Burwell, R. L., Jr., in "Catalysis on the Energy Scene" (S. Kaliaguine and A. Mahay, Eds.), p. 45. Elsevier, Amsterdam, 1984.
- Nakamura, R., and Burwell, R. L., Jr., J. Catal. 93, 399 (1985).
- Burwell, R. L., Jr., and Chung, J. S., React. Kinet. Catal. Lett. 35, 381 (1987).
- Holl, Y., Tournoude, R., Maire, G., Muller, A., Engelhard, P. A., and Grosmangin, J., J. Catal. 104, 202 (1987).
- Holl, Y., Garin, F., Maire, G., Muller, A., Engelhard, P. A., and Grosmangin, J., J. Catal. 104, 211 (1987).
- Holl, Y., Garin, F., Maire, G., Muller, A., Engelhard, P. A., and Grosmangin, J., J. Catal. 104, 225 (1987).

ROBERT L. BURWELL, JR.

Ipatieff Laboratory Department of Chemistry Northwestern University Evanston, Illinois 60201

Received March 21, 1988